
Mechanisms of Regional Arctic Sea Ice Predictability in Two Dynamical Seasonal

Forecast Systems

MITCHELL BUSHUK,a,b YONGFEI ZHANG,c MICHAEL WINTON,a BILL HURLIN,a THOMAS DELWORTH,a FEIYU LU,c

LIWEI JIA,a,b LIPING ZHANG,a,b WILLIAM COOKE,a MATTHEW HARRISON,a NATHANIEL C. JOHNSON,a

SARAH KAPNICK,a COLLEEN MCHUGH,a,d HIROYUKI MURAKAMI,a,b ANTHONY ROSATI,a,b KAI-CHIH TSENG,c

ANDREW T. WITTENBERG,a XIAOSONG YANG,a AND FANRONG ZENGa

a National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
b University Corporation for Atmospheric Research, Boulder, Colorado

c Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
d Science Applications International Corporation, Reston, Virginia

(Manuscript received 14 July 2021, in final form 4 January 2022)

ABSTRACT: Research over the past decade has demonstrated that dynamical forecast systems can skillfully predict pan-
Arctic sea ice extent (SIE) on the seasonal time scale; however, there have been fewer assessments of prediction skill on
user-relevant spatial scales. In this work, we evaluate regional Arctic SIE predictions made with the Forecast-Oriented
Low Ocean Resolution (FLOR) and Seamless System for Prediction and Earth System Research (SPEAR_MED) dynami-
cal seasonal forecast systems developed at the NOAA/Geophysical Fluid Dynamics Laboratory. Compared to FLOR, we
find that the recently developed SPEAR_MED system displays improved skill in predicting regional detrended SIE anom-
alies, partially owing to improvements in sea ice concentration (SIC) and thickness (SIT) initial conditions. In both systems,
winter SIE is skillfully predicted up to 11 months in advance, whereas summer minimum SIE predictions are limited by the
Arctic spring predictability barrier, with typical skill horizons of roughly 4 months. We construct a parsimonious set of sim-
ple statistical prediction models to investigate the mechanisms of sea ice predictability in these systems. Three distinct pre-
dictability regimes are identified: a summer regime dominated by SIE and SIT anomaly persistence; a winter regime
dominated by SIE and upper-ocean heat content (uOHC) anomaly persistence; and a combined regime in the Chukchi
Sea, characterized by a trade-off between uOHC-based and SIT-based predictability that occurs as the sea ice edge posi-
tion evolves seasonally. The combination of regional SIE, SIT, and uOHC predictors is able to reproduce the SIE skill of
the dynamical models in nearly all regions, suggesting that these statistical predictors provide a stringent skill benchmark
for assessing seasonal sea ice prediction systems.
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1. Introduction

The decline of Arctic sea ice extent (SIE) and the associ-
ated increase in open-water season length (Stroeve and Notz
2018) has motivated a need for seasonal Arctic sea ice predic-
tions (Jung et al. 2016). Skillfully predicting Arctic sea ice
could benefit communities and stakeholders in the region and
also provide a source of prediction skill for other components
of the Earth system (Jung et al. 2014; Meehl et al. 2021). Sea
ice forecasting capability has developed over the past decade
due to interacting advancements in polar observations, cou-
pled climate modeling, data assimilation techniques, and sea
ice predictability research (Guemas et al. 2016b). Despite

these notable advances, for many forecasting applications, sea
ice predictions have yet to achieve the prediction skill levels
or user-oriented metrics required for forecasts to be useful to
stakeholders (Caron et al. 2020).

The basic picture of seasonal-to-interannual Arctic sea ice
predictability involves a competition between slowly evolving
and predictable variations in the ocean and sea ice compo-
nents and comparatively unpredictable fluctuations that occur
in the atmosphere (e.g., Tietsche et al. 2016). Both the atmo-
sphere and ocean interact strongly with sea ice, each exerting
thermodynamic and dynamic influences, but the relative
importance of these factors varies with season, lead time, and
region (Tietsche et al. 2014).

The direction of ice-edge motion dictates the dominant
sources of SIE predictability for each season. In fall and winter
months, as the ocean loses heat to the atmosphere and cools,
new sea ice forms and the ice edge advances southward. The
rate of ice formation is strongly modulated by the ocean condi-
tions south of the sea ice edge and, therefore, upper-ocean
heat content (uOHC) (Blanchard-Wrigglesworth et al. 2011a;
Schlichtholz 2011; Day et al. 2014b; Bushuk and Giannakis
2015; Sigmond et al. 2016; Bushuk et al. 2019b; Kimmritz et al.
2019) and ocean heat transport (OHT) convergence (Årthun
et al. 2012; Onarheim et al. 2015; Serreze et al. 2016; Lenetsky
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et al. 2021) both provide crucial sources of predictability for
fall and winter SIE. Conversely, in spring and summer months,
sea ice begins to melt and the ice edge retreats northward. The
energy required to melt sea ice is primarily determined by the
sea ice thickness (SIT), and thus the amount of northward
retreat is strongly modulated by the SIT conditions located
north of the sea ice edge. Many previous studies have shown
that SIT provides a key source of predictability for summer
SIE conditions (Holland et al. 2011; Blanchard-Wrigglesworth
et al. 2011b; Chevallier and Salas y Mélia 2012; Krumpen et al.
2013; Day et al. 2014a; Collow et al. 2015; Massonnet et al.
2015; Guemas et al. 2016a; Williams et al. 2016; Blanchard-
Wrigglesworth et al. 2017; Bushuk et al. 2017b; Dirkson et al.
2017; Blockley and Peterson 2018; Holland et al. 2019; Bonan
et al. 2019; Brunette et al. 2019; Babb et al. 2019; Bushuk et al.
2020; Babb et al. 2020).

Dynamical prediction systems based on global climate
models (GCMs) seek to leverage these sources of predictabil-
ity by initializing the sea ice, ocean, atmosphere, and land
components using observational constraints and by accurately
simulating the time-evolving state of the coupled system. A
number of recent studies have established that these dynam-
ical prediction systems can skillfully predict detrended
pan-Arctic SIE anomalies at lead times ranging from 1 to 11
months for winter SIE and from 1 to 6 months for summer
SIE (e.g., Wang et al. 2013; Chevallier et al. 2013; Sigmond
et al. 2013; Merryfield et al. 2013; Msadek et al. 2014; Peter-
son et al. 2015; Blanchard-Wrigglesworth et al. 2015; Collow
et al. 2015; Guemas et al. 2016a; Dirkson et al. 2017; Harnos
et al. 2019; Batté et al. 2020). Pan-Arctic SIE predictions
have limited utility for forecast users, who typically require
local- or regional-scale information, and, therefore, recent
efforts have focused on assessing regional sea ice prediction
skill (Sigmond et al. 2016; Krikken et al. 2016; Bushuk et al.
2017a; Dirkson et al. 2019; Batté et al. 2020). These studies
have shown that detrended regional winter sea ice can be
skillfully predicted up to 11 months in advance, whereas
regional summer sea ice predictions are skillful up to 4
months in advance because they are limited by the Arctic
sea ice spring predictability barrier (Bonan et al. 2019;
Bushuk et al. 2020). In parallel to this work on dynamical
sea ice predictions, a number of skillful prediction methods
based on statistical methodologies have been developed
(Drobot et al. 2006; Drobot 2007; Lindsay et al. 2008;
Schröder et al. 2014; Kapsch et al. 2014; Liu et al. 2015;
Yuan et al. 2016; Williams et al. 2016; Petty et al. 2017; Kon-
drashov et al. 2018; Brunette et al. 2019; Walsh et al. 2019;
Gregory et al. 2020; Andersson et al. 2021). These studies
have primarily focused on summer SIE and generally show
similar skill horizons to those found in dynamical models,
but often have higher skill values (e.g., Yuan et al. 2016;
Gregory et al. 2020; Andersson et al. 2021).

“Perfect model” ensemble experiments performed with
GCMs have been used to estimate the upper limits of Arctic
sea ice predictability and have shown that there is a significant
gap between the current skill of initialized dynamical predic-
tion systems and the skill achievable by perfect model fore-
casts (Koenigk and Mikolajewicz 2009; Holland et al. 2011;

Blanchard-Wrigglesworth et al. 2011b; Tietsche et al. 2014;
Germe et al. 2014; Day et al. 2014b, 2016; Bushuk et al. 2019a;
Holland et al. 2019). These perfect model experiments suggest
that there is substantial room for improvement in Arctic sea
ice predictions; however, perfect model predictability esti-
mates are subject to model errors and thus may be biased rel-
ative to nature’s true predictability limits (Kumar et al. 2014).
Indeed, Arctic SIE anomalies in GCMs are generally more
persistent than observations and this overpersistence likely
results in an overestimation of predictability in perfect model
experiments (Blanchard-Wrigglesworth and Bushuk 2019;
Giesse et al. 2021). This suggests that the true upper limits of
sea ice predictability likely lie somewhere between previously
documented perfect model skill estimates and the current skill
of operational systems.

In this study, we take a different tack to exploring predict-
ability, analyzing the sources of prediction skill within dynam-
ical seasonal prediction systems. We first assess the regional
detrended SIE prediction skill in two seasonal prediction sys-
tems developed at the Geophysical Fluid Dynamics Labora-
tory. After establishing the regional SIE prediction skill of
each system, we next seek a parsimonious description of the
sources of prediction skill. In particular, we construct a series
of simple linear regression models that use the forecast initial
conditions (ICs) as predictors for regional Arctic SIE. The
skill of these simple statistical models can then be compared
to the dynamical models’ skill in order to assess the key sour-
ces of prediction skill in each system. Compared to the perfect
model framework, this approach focuses on predictions of
observed regional SIE, and thus does not suffer from the
problem of potentially overestimating predictability. How-
ever, this approach may miss sources of skill that are present
in nature and may also be limited by the chosen statistical pre-
diction models. Therefore, this approach of quantifying pre-
dictability provides a lower bound on predictability that
complements the upper bound provided by perfect model
experiments. These lower bounds, if sufficiently skillful, can
help to better constrain the true limits of regional Arctic sea
ice predictability. The simple statistical models also provide a
direct quantification of the prediction skill attributable to par-
ticular sources of predictability. It is important to note that
this quantification of skill is based on an earlier time period of
1992–2020, and therefore it is not necessarily indicative of
future skill due to the nonstationarity of Arctic sea ice pre-
dictability (e.g., Holland and Stroeve 2011; Cheng et al. 2016;
Holland et al. 2019). Additionally, statistical models can over-
estimate future skill due to overfitting, a factor we attempt
to mitigate by considering single-predictor linear regression
models.

The outline of this paper is as follows. In section 2, we
introduce the dynamical seasonal prediction systems, describe
suites of retrospective seasonal prediction experiments, and
outline our methods for prediction skill assessment and model
evaluation. In section 3, we evaluate the suitability of the
dynamical models and their corresponding ICs for Arctic sea
ice predictions by considering their simulated mean state,
trends, and interannual variability. In section 4, we provide an
assessment of regional Arctic SIE prediction skill in each
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system and discuss the skill differences between the models.
In section 5 and 6, we consider the sources of predictability
for summer and winter regional Arctic SIE, respectively. In
section 7, we analyze predictions in the Chukchi Seas,
highlighting a combined predictability regime present in this
region. We conclude and discuss the results in section 8.

2. Methods

a. FLOR seasonal prediction system

In this study, we assess seasonal sea ice predictions made
with two dynamical prediction systems developed at the Geo-
physical Fluid Dynamics Laboratory. We first describe the
Forecast-Oriented Low Ocean Resolution (FLOR) system in
this subsection and describe the recently developed Seamless
System for Prediction and Earth System Research (SPEAR)
in the following subsection (see Table 1 for an overview of
the key features of each prediction system).

Previous studies have shown that the FLOR prediction
system skillfully predicts (see definition of skill metrics in
section 2e ahead) detrended regional SIE in both the Arctic
(Bushuk et al. 2017a) and Antarctic (Bushuk et al. 2021).
FLOR is a fully coupled global atmosphere–ocean–land–sea
ice model, with nominal horizontal resolutions of 0.58 in the
atmosphere–land components and a coarser resolution of
1.08 in the ocean and sea ice components (Vecchi et al.
2014). FLOR’s sea ice component is based upon the sea ice
simulator, version 1 (SIS1; Delworth et al. 2006), which
employs a modified Semtner thermodynamic scheme with
two ice layers and one snow layer (Winton 2000), a subgrid-
scale ice-thickness distribution (ITD) with five thickness
categories (Thorndike et al. 1975; Bitz et al. 2001), a formula-
tion of ice dynamics based on the elastic–viscous–plastic
(EVP) rheology (Hunke and Dukowicz 1997), and a surface-
temperature-dependent albedo parameterization (see section
3.6.2 of Hunke et al. 2015). FLOR’s ocean, atmosphere, and

land components are based on an updated version of Ocean
Model, version 2.1 (OM2.1; Gnanadesikan et al. 2006; Delworth
et al. 2012); Atmosphere Model, version 2.5 (AM2.5; Anderson
et al. 2004; Delworth et al. 2012); and Land Model, version 3
(LM3; Milly et al. 2014), respectively.

The FLOR seasonal predictions are initialized using ocean
and sea ice ICs from the GFDL Ensemble Coupled Data
Assimilation system (ECDA; Zhang et al. 2007), which is
based upon the CM2.1 model (Delworth et al. 2006). ECDA
is a weakly coupled assimilation system spanning 1961–2020
that provides “full field” ICs using an ensemble adjustment
Kalman filter (EAKF; Anderson 2001) approach. ECDA
assimilates observations of ocean temperature and salinity
(T/S) and atmospheric temperature data from the NCEP–
DOE Atmospheric Model Intercomparison Project (AMIP-II)
reanalysis (Kanamitsu et al. 2002) (see Table 1). The ocean
observations comprise sea surface temperature (SST) data from
the Hadley Centre’s Sea Ice and SST dataset (HadISST1;
Rayner et al. 2003) (prior to 2011) and NOAA’s daily Optimum
Interpolation SST dataset (OISST; Reynolds et al. 2007) (post
2011), and T/S profiles from the World Ocean Database
(WOD; Levitus et al. 2013), the Global Temperature and Salin-
ity Profile Programme (GTSPP; Sun et al. 2010), and the Argo
program (Roemmich et al. 2004). The T/S profiles include pro-
filing floats (PFL), expendable bathythermograph (XBT),
mooring (MRB), ocean station (OSD), mechanical bathyther-
mograph (MBT), and conductivity–temperature–depth (CTD)
data [see Levitus et al. (2013) for descriptions of the various
data types]. ECDA does not directly assimilate sea ice data, but
the sea ice state variables are constrained via the assimilation of
oceanic and atmospheric data and the associated heat fluxes
and interfacial stresses that are passed to the sea ice model
(Bushuk et al. 2019b). FLOR’s atmosphere and land ICs come
from a suite of AMIP-style atmosphere–land simulations forced
by observed interannually varying SST and sea ice conditions
from OISST.

TABLE 1. Summary of GFDL seasonal prediction systems and retrospective forecasts considered in this study.

System property FLOR SPEAR_MED

Ocean model MOM5; 1.08, 50 vertical levels MOM6; 1.08, 75 vertical levels
Sea ice model SIS1; 1.08, 5-category ITD SIS2; 1.08, 5-category ITD
Atmosphere model AM2.5; 0.58, 32 vertical levels AM4; 0.58, 33 vertical levels
Land model LM3; 0.58 LM4; 0.58

Ocean data Satellite SST, Argo, XBT, MRB, CTD, MBT; daily Satellite SST, Argo, XBT, MRB; daily
Atmosphere data 3D temperature from NCEP-2; 6-hourly 3D temperature, winds, humidity from CFSR; 6-hourly
Sea ice data None Satellite SIC used to adjust under-ice SST; daily
Land data None None
Ocean ICs ECDA SPEAR ODA
Sea ice ICs ECDA SPEAR_MED nudged run
Atmosphere ICs AMIP run SPEAR_MED nudged run
Land ICs AMIP run SPEAR_MED nudged run

Reforecast period 1992–2020 1992–2020
Ensemble size 12 15
Initialization dates First of each month First of each month
Prediction length 1 year 1 year

B U SHUK E T A L . 42091 JULY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/05/22 05:21 PM UTC



b. SPEAR seasonal prediction system

SPEAR is a recently developed seasonal prediction system,
based on the coupled model components of the CM4 model
(Held et al. 2019), but employing two factors to optimize for
seasonal-to-decadal prediction research: 1) a lower resolution
in the ice–ocean components to achieve the computational
efficiency required for ensemble prediction, and 2) a higher-
resolution option (SPEAR_MED) in the atmosphere and
land components geared toward regional climate impacts.
The SPEAR coupled model has two versions, SPEAR_LO
and SPEAR_MED, which share the same 18 nominal ocean–
sea ice resolution but have differing atmosphere–land resolu-
tions of 18 and 0.58, respectively (Delworth et al. 2020).
SPEAR_MED is GFDL’s quasi-operational seasonal predic-
tion system, which submits near-real-time experimental pre-
dictions each month to the North American Multi-Model
Ensemble (NMME; Kirtman et al. 2014). In this manuscript,
we focus our analysis on the SPEAR_MED NMME system
since we find that SPEAR_LO has very similar prediction
skill for Arctic regional SIE. Note that while the systems have
similar skill for Arctic sea ice, SPEAR_MED has better per-
formance for other climate variables, such as tropical cyclone
intensity and Antarctic sea ice (Bushuk et al. 2021).

SPEAR’s sea ice model is based upon the sea ice simulator
version 2 (SIS2; Adcroft et al. 2019). Similar to SIS1, the SIS2
model uses a five-category ITD and computes internal ice
stresses using an EVP rheology. The key differences in the
SIS2 model include improved shortwave radiation physics
based on the Delta-Eddington scheme of Briegleb and Light
(2007), an updated thermodynamic solver similar to Bitz and
Lipscomb (1999), improved vertical ice temperature resolu-
tion with four ice layers and one snow layer, updated numeri-
cal algorithms to reduce the occurrence of coupled ice–ocean
numerical instabilities, and ice dynamics that are solved using
a C-grid stencil (Bouillon et al. 2009). SPEAR’s ocean, atmo-
sphere, and land models are based on the Modular Ocean
Model, version 6 (MOM6; Adcroft et al. 2019); Atmosphere
Model, version 4; and Land Model, version 4 (Zhao et al.
2018a,b), respectively.

SPEAR_MED is initialized using two separate assimila-
tion experiments spanning 1990–2020 (see Table 1). The sea
ice, atmosphere, and land ICs come from a nudged atmo-
sphere and SST ensemble run of the coupled SPEAR_MED
model. In this run, the atmospheric fields are nudged toward
3D temperature, wind, and humidity data from the NOAA/
NCEP Climate Forecast System Reanalysis (CFSR; Saha
et al. 2010) and the SST field is nudged toward daily OISST
data (Reynolds et al. 2007). This run also incorporates a
constraint from OISST SIC data, which are used to modify
the SST values under sea ice. Specifically, if a gridpoint is
ice covered in the observations (defined as SIC $ 30%),
then the SST value is replaced by the freezing point of sea-
water given by Tf�2 0:0543 SSS, where Tf is the freezing
point and SSS is the model-predicted sea surface salinity.
This SST modification was found to significantly improve
the fidelity of simulated sea ice in the nudged experiment
compared to observations. The nudging is performed using

a 6-h e-folding time scale for atmospheric temperatures and
winds, a 1-day time scale for humidity, and a 4 m day21 pis-
ton velocity for SST (corresponding to a 12.5-day e-folding
time scale for a 50-m mixed layer). The nudged experiment
is run as a 5-member ensemble, which is initialized in 1990
using ensemble members 1–5 of the SPEAR_MED Large
Ensemble, described in the following subsection. These five
members are repeated three times to create a 15-member
ensemble of ICs.

The SPEAR_MED ocean ICs come from an ocean data
assimilation (ODA) system based on the SPEAR_LO cou-
pled model and an EAKF approach (Lu et al. 2020). The
ODA system assimilates daily OISST observations and
ocean T/S profiles from Argo (PFL), XBT, and MRB. The
ODA system does not include CTD, OSD, drifting buoy
(DRB), glider (GLD), and instrumented marine mammal
(APB) data types, each of which have some coverage in the
Arctic region. The SST values under sea ice are modified
using the same freezing-point correction as used in the
nudged run. The use of a common SST dataset between the
ODA and nudged experiments allows for the ICs from
these individual DA experiments to be combined to initial-
ize the coupled model.

The SPEAR_MED system also uses an ocean-tendency
adjustment (OTA) procedure to reduce the ocean biases of
both the ODA run and the free-running model. This proce-
dure applies the climatological DA increments from a previ-
ous ODA run spanning 2003–18 as 3D ocean T/S tendency
terms. This OTA technique improves both DA performance
as well as coupled model prediction skill for the El
Niño–Southern Oscillation (Lu et al. 2020).

c. Retrospective seasonal predictions and large ensemble
experiments

We perform suites of retrospective seasonal prediction
experiments with each prediction system spanning the years
1992–2020 (see Table 1). These ensemble seasonal predictions
are initialized on the first of each month and integrated for
1 year. The FLOR and SPEAR_MED systems are run with
12 and 15 ensemble members, respectively.

We also use large ensembles (LEs) of historical simulations
performed with each model to assess the mean state biases of
FLOR and SPEAR_MED (Bushuk et al. 2020; Delworth et al.
2020). For both models, the LEs use 30 members and span
the period 1921–2100. The FLOR LE uses historical radiative
forcings from 1921 to 2005 and representative concentration
pathway 8.5 (RCP8.5; Meinshausen et al. 2011) from 2006 to
2100, and the SPEAR_MED LE uses historical radiative forc-
ings from 1921 to 2014 and shared socioeconomic pathways
5–8.5 (SSP5–8.5; Riahi et al. 2017) from 2015 to 2100.

d. Observational datasets

We assess the model simulations and predictions using
monthly averaged passive microwave satellite SIC observa-
tions from the National Snow and Ice Data Center (NSIDC)
processed using the NASA Team retrieval algorithm (dataset
ID: NSIDC-0051; Cavalieri et al. 1996). The observed
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monthly SIC data is regridded to the model grid to assess
model biases and to compute prediction skill metrics. We
evaluate SIT using the Alfred Wegener Institute monthly
CryoSat-2 SIT product, version 2.3, which derives SIT esti-
mates from satellite radar altimeter measurements of the
snow–ice interface and provides winter data for October–
April of years 2010/11 through 2020/21 (Ricker et al. 2014).
We also use SIT reanalysis data from the Pan-Arctic Ice
Ocean Modeling and Assimilation System (PIOMAS; Zhang
and Rothrock 2003). Sea ice drift is assessed using the low-
resolution sea ice drift product of the EUMETSAT Ocean
and Sea Ice Satellite Application Facility (OSISAF; Lavergne
et al. 2010), which provides daily velocity data spanning
2006–21. We average the daily data into monthly means for
our analysis.

e. Prediction skill metrics, significance testing, and
reference forecasts

In this manuscript, we focus on monthly mean and
regional-scale quantities, with an associated companion
manuscript focusing on daily and gridpoint-scale evalua-
tions (Zhang et al. 2022). We consider prediction skill for
regional SIE, defined as the regional areal sum of all grid
points with SIC $ 15%. Throughout the manuscript, we use
the term “target month” to refer to the month that is being
predicted, and “lead time” to refer to the number of months
prior to the target month that the forecast was initialized.
For example, a 1 January initialized forecast of the January-
mean SIE is referred to as a lead-0 prediction.

We let o be an observed time series of regional SIE in a
given target month, and let pij(t) be the model-predicted
value for year i, ensemble member j, and lead time t. We
assess prediction skill using the ensemble-mean prediction
pi(t) given by

pi(t) � 1
K

∑K
j�1

pij(t); (1)

where K is the number of ensemble members. We consider
prediction skill based on both the anomaly correlation coef-
ficient (ACC) and the detrended ACC. We primarily focus
our analysis on detrended ACC, since forced Arctic SIE
trends provide the dominant source of prediction skill for
nondetrended anomalies (Sigmond et al. 2013). The ACC is
defined as

ACC(t) �

∑N
i�1

pi(t) 2 p(t)[ ]
oi 2 o( )

������������������������∑N
i�1

pi(t) 2 p(t)[ ]2√ �����������������∑N
i�1

oi 2 o( )2
√ ; (2)

where N is the number of years in the observed and predicted
time series and the overbar denotes a temporal mean.

The detrended ACC uses anomalies relative to a linear
trend prediction, thereby removing skill associated with sec-
ular trends and focusing on interannual anomalies. The
detrended ACC is defined as

ACCdetrend(t) �

∑N
i�1

pi(t) 2 pLi (t)
[ ]

oi 2 oLi
( )

��������������������������∑N
i�1

pi(t) 2 pLi (t)
[ ]2√ �������������������∑N

i�1
oi 2 oLi
( )2√ ; (3)

where oLi and pLi (t) are linear trend predictions for year i
computed using all available past observed and predicted
data, respectively. This approach is chosen to avoid using
future data to compute the detrended anomaly in a given
year. We assume a linear trend of zero for the first 3 years.

We assess the statistical significance of the computed ACC
values using a bootstrapped resampling approach. This proce-
dure involves producing an empirical distribution of ACC sta-
tistics based on resampling the prediction ensemble with
replacement (Efron 1982). We compute a 95% confidence
interval for each target month, region, and lead time based on
a bootstrapped distribution of 1000 realizations. The ACC
value is considered statistically significant at the 95% confi-
dence level if the lower limit of this confidence interval is
greater than zero. We also use the bootstrapped confidence
intervals to assess the statistical significance of skill differ-
ences between the models. To do this, we transform the ACC
values and confidence intervals to z space using the Fisher z
transformation, compute standard errors for FLOR and
SPEAR_MED (using the appropriate side of the confidence
interval, depending on which model has the higher ACC
value), and add the standard errors in quadrature to obtain a
standard error for the correlation difference. If the correlation
difference exceeds 1.96 standard errors, then the difference is
considered statistically significant at the 95% confidence level.

We compare the models’ prediction skill to the skill of a
reference forecast based on anomaly persistence. The anom-
aly persistence forecast uses the observed anomaly at the
forecast initialization time. These anomalies can be computed
either relative to the linear trend (detrended anomalies) or
relative to the climatology (nondetrended anomalies).

3. Simulated Arctic sea ice mean state, trends, and
interannual variability

We first evaluate the fidelity of simulated Arctic sea ice in
the FLOR and SPEAR_MED models. We assess the simu-
lated mean state, trends, and interannual variability in both
the free-running LEs of historical simulations and the data
assimilation runs used to produce sea ice ICs.

a. Arctic sea ice mean state

Figure 1 shows simulated climatologies of pan-Arctic SIE
and sea ice volume (SIV) and the spatial patterns of SIC
biases in the FLOR and SPEAR_MED models. We find that
the SPEAR_MED ICs accurately capture the observed SIE
seasonal cycle and also generally reflect the climatological
SIC spatial pattern. The SPEAR_MED LE simulates pan-
Arctic SIE that is biased high throughout the year, due to
overly extensive winter sea ice in the Greenland–Iceland–
Norwegian (GIN), Barents, and Bering Seas and positive sum-
mer SIC biases in the Beaufort, Chukchi, and East Siberian
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Seas. SPEAR_MED LE also has negative winter SIC biases
in the Sea of Okhotsk and the Labrador Sea. These SIC
biases are reduced substantially in the SPEAR_MED IC run,
but some modest biases remain with a spatial pattern that
mirrors the LE biases. Similar to SPEAR_MED, FLOR LE’s
positive winter bias is dominated by the GIN and Barents
Seas, whereas its summer SIC bias is more zonally symmetric.
These SIC biases are substantially reduced in the FLOR IC
run. Note that the FLOR ICs have pan-Arctic winter SIE val-
ues that are lower than observed but have roughly offsetting

positive and negative winter SIC biases. This discrepancy is
primarily due to differences in the land–sea mask, which are
particularly relevant in winter months when the ice edge
interacts with many coastlines.

The pan-Arctic SIV climatology simulated by the SPEAR_MED
LE agrees reasonably well with PIOMAS reanalysis and
improves upon the FLOR LE, which is biased thin relative
to PIOMAS throughout the year (Fig. 1b). PIOMAS is a sea
ice reanalysis product, which does not assimilate SIT, but
compares reasonably well with available satellite, aircraft,

FIG. 1. Pan-Arctic (a) SIE and (b) SIV climatologies over 1990–2020 in assimilation runs used for ICs (solid lines)
and LE historical simulations (dashed lines) performed with FLOR (blue) and SPEAR_MED (red). Black lines show
the SIE climatology from NSIDC observations and the SIV climatology from PIOMAS reanalysis, respectively. Sea
ice concentration biases (model minus observations; 1990–2020) in (c)–(f) September and (g)–(j) March in the IC and
LE runs. The black contours show the observed climatological sea ice edge position.
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and in situ SIT data (Schweiger et al. 2011; Wang et al.
2016). Both the FLOR and SPEAR_MED ICs are notably
thinner than their LE counterparts, implying that winds and
temperatures constrained by reanalysis data tend to pro-
duce thinner ice than the atmospheric conditions simulated
by the free-running models. In Fig. 2, we plot winter clima-
tologies of SIT and ice drift. We find that while the
SPEAR_MED LE agrees with PIOMAS in terms of pan-
Arctic SIV, it has large errors in its spatial SIT pattern,
characterized by too much thick ice in the Beaufort and
Chukchi Seas and a lack of thick ice directly north of
Greenland. These SIT pattern errors resemble those in the
GFDL-CM4 model (Held et al. 2019) and are associated
with SPEAR_MED LE’s biases in sea ice drift, which pro-
mote advection of ice into the Beaufort Sea. The
SPEAR_MED Beaufort and Chukchi thickness bias is spa-
tially coincident with the model’s positive summer SIC
bias, suggesting that the model is unable to completely
melt this overly thick ice (cf. Figs. 1f–2e). The FLOR LE
has an SIT spatial pattern that more closely resembles
observations; however, its mean SIT is biased thin, result-
ing in the negative SIV bias shown in Fig. 1b. We find that
both models have too much Fram Strait SIA and SIV

export (not shown), which may be related to their positive
winter SIC biases in the GIN Seas. The IC runs have atmo-
spheric reanalysis constraints, which lead to substantial
improvements in simulated ice drift, including a well-
defined Beaufort Gyre and a transpolar drift stream. It is
notable that even with these drift improvements, the
SPEAR_MED ICs retain errors in their SIT spatial pattern
that resemble a muted version of the SPEAR_MED LE
bias. Both IC runs are biased thin, resulting in the negative
SIV biases shown in Fig. 1b.

b. Trends and interannual variability

In Fig. 3, we plot time series of September and March pan-
Arctic SIE in the assimilation experiments used to produce
ICs and the historical LE experiments. Both the FLOR and
SPEAR_MED ICs capture the observed SIE trends and inter-
annual variability with some skill (see Figs. 3a,b); however, the
SPEAR_MED March trend is less negative than observed. In
Fig. 4, we plot regional correlations between detrended SIE
ICs and NSIDC observations for each month of the year. We
find that in essentially all regions and all months of the year,
the SPEAR_MED regional SIE ICs have improved interan-
nual variability compared with the FLOR ICs. The reason for

FIG. 2. Winter sea ice thickness and drift climatologies (January–March; 2010–20) in the data assimilation runs used for (a),(b) ICs and
(d),(e) LE historical simulations. (c) The observed thickness is from AWI’s CryoSat-2 product, and the observed drift is from OSISAF.
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this improvement is that SPEAR_MED uses observed SIC
data to modify its under-ice SSTs, which results in SSTs that
provide a strong constraint on SIE. These correlations can be
further improved by direct assimilation of SIC data (Zhang
et al. 2021), but the SPEAR_MED system does not include
sea ice data assimilation. The FLOR system also incorporates
an SST constraint, but this constraint is weaker due to the spa-
tial subsampling of Arctic SST in the ECDA system and the

lack of SIC data used in this system. We also find that
SPEAR_MED has improved regional SIV ICs compared to
FLOR, showing higher detrended correlation with PIOMAS
in essentially all Arctic regions (see supplementary Fig. S1).

Both the FLOR and SPEAR_MED LEs capture the
observed SIE declines in summer and winter seasons with
good fidelity, despite their biases in pan-Arctic SIE (see
Figs. 3c–f). The observed Arctic regional SIE trends generally
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FIG. 3. Pan-Arctic SIE time series in FLOR (blue), SPEAR_MED (red), and NSIDC observations (black). (a),(b)
Simulated SIE in the assimilation runs used for ICs. Simulated SIE in large ensembles of historical simulations per-
formed with (c),(d) FLOR and (e),(f) SPEAR_MED.

J OURNAL OF CL IMATE VOLUME 354214

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/05/22 05:21 PM UTC



fall within the ensemble distribution of simulated trends (not
shown), suggesting that the simulated Arctic response to cli-
mate forcings in these models is reasonable. The overall per-
formance of the FLOR and SPEAR_MED models, in terms
of their mean state, interannual variability, and trends, sug-
gests that they are “fit for purpose” for use as Arctic seasonal
sea ice prediction systems, which we explore next.

4. Regional sea ice prediction skill

a. Overview of prediction skill characteristics

In this section, we assess the regional SIE prediction skill of
FLOR and SPEAR_MED, focusing on common features and

skill differences between the two systems. We first consider
the pan-Arctic September SIE prediction skill, a prediction of
great interest to the stakeholder community and the primary
focus of the Sea Ice Outlook (Meier et al. 2021). Figure 5
shows that both systems skillfully predict September pan-
Arctic SIE at lead times of 0–3 months, capturing both the
long-term trend as well as some of the interannual fluctua-
tions. The predictions in Fig. 5 have been bias corrected by a
linear regression adjustment, obtained by regressing the
observations onto the set of retrospective forecasts. This cor-
rection adjusts the mean value and amplitude of the predic-
tions but does not change the ACC values. SPEAR_MED
has higher September SIE skill than FLOR for both full and

FIG. 4. Regional SIE detrended correlations between FLOR (blue) and SPEAR_MED (red) ICs and NSIDC observations. The correla-
tions are computed over years 1990–2020. For region definitions, see Figs. 6 and 7. Correlation values are plotted for months with SIE stan-
dard deviation greater than 0.03 million km2.
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detrended anomalies. The Sea Ice Outlook requests predic-
tions initialized on 1 June, 1 July, and 1 August, and
SPEAR_MED has detrended correlation values at these ini-
tialization times of 0.39, 0.67, and 0.72, respectively, showing
that skillful detrended predictions of September SIE are pos-
sible at these lead times.

In Figs. 6 and 7, we take a more comprehensive view of the
skill of these systems, plotting detrended ACC values for all
Arctic regions, target months, and lead times of 0–11 months.
Note that ACC values are only plotted for target months with
SIE standard deviation greater than 0.03 million km2. The
nondetrended ACC values are shown in supplementary Figs.
S2 and S3. We find that both models exhibit statistically signif-
icant seasonal prediction skill for detrended regional SIE
anomalies with skill horizons that depend strongly on region,
target month, and model. Both FLOR and SPEAR_MED
have skill that generally exceeds the skill of the persistence
forecast (indicated by square markers); however, there are
months and lead times when the models’ skill is significant but

lower than persistence (indicated by dot markers). The right
columns of Figs. 6 and 7 plot skill differences between the
models and show that SPEAR_MED has higher skill than
FLOR in nearly all regions of the Arctic (statistically signifi-
cant differences are indicated by upward triangles), with the
exception of the GIN Seas where FLOR’s skill is superior to
SPEAR_MED’s (statistically significant differences are indi-
cated by downward triangles). A generic feature of the
regional skill differences is that SPEAR_MED is consistently
more skillful than FLOR at lead times of 0–1 month, owing to
SPEAR_MED’s improved SIE ICs (see Fig. 4). For some tar-
get months and regions, FLOR’s lead-0 skill is lower than its
skill at longer lead times, which is suggestive of errors in SIE
ICs. This behavior is not found in SPEAR_MED, consistent
with its improved SIE ICs. The sources of seasonal predict-
ability in these systems are explored further in section 5–7.

We also find that the SPEAR_LO system, which
employs lower-resolution atmosphere–land components
than SPEAR_MED, has very similar skill to SPEAR_MED

FIG. 5. Predictions of September pan-Arctic SIE in (a) FLOR and (b) SPEAR_MED at lead times of 0, 1, 2, and 3
months. (c),(d) Detrended SIE predictions. ACC values are indicated in colored text and detrended ACC values are
indicated in parentheses. These predictions have been bias corrected by a linear regression adjustment.
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FIG. 6. Regional SIE prediction skill (detrended ACC) in FLOR and SPEAR_MED for regions of
summer ice variability. Square and dot markers indicate months in which the ACC values are statisti-
cally significant at the 95% confidence level. Squares indicate months where the model’s skill beats the
persistence forecast, and dots indicate months where the model’s skill is significant but lower than per-
sistence. ACC differences (SPEAR_MED minus FLOR) computed using the Fisher z transformation
are plotted in the third column. Upward (downward) triangles indicate months where the
SPEAR_MED ACC values are statistically significantly greater than (less than) the FLOR ACC val-
ues at the 95% confidence level. ACC values are masked for target months with SIE standard devia-
tion less than 0.03 million km2.
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FIG. 7. As in Fig. 6, but for regions of winter sea ice variability.
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(see Figs. S4 and S5). This motivates our focus on SPEAR_
MED in this study, and also suggests that the computation-
ally efficient SPEAR_LO model can be equally used for
Arctic sea ice prediction studies, which is the approach we
take in the companion paper of Zhang et al. (2022). Next,
we discuss the regional skill characteristics of FLOR and
SPEAR_MED.

b. Summer SIE prediction skill

Figure 6 shows detrended prediction skill values in the
regions of summer Arctic sea ice variability. The regional
ACC skill structures are generally similar between the two
models, but SPEAR_MED consistently has superior skill to
FLOR. We find that the Laptev and East Siberian Seas show
skillful predictions of summer SIE 2–6 months in advance,
with both regions showing a diagonal ACC structure consis-
tent with a spring predictability barrier (Bonan et al. 2019).
This barrier corresponds approximately to an initialization
date of 1 June: predictions initialized on or after 1 June skill-
fully predict summer SIE, whereas skill drops off rapidly for
predictions initialized prior to this date. Both the Chukchi
and Beaufort Seas show distinctive skill structures that are
quite consistent between the models. The Chukchi Sea shows
a diagonal correlation structure suggestive of a spring barrier
for target months August–October, but these months are
flanked by longer-lead prediction skill for June, July, and
November target months. This skill pattern is suggestive of a
seasonally dependent combination of predictability regimes in
the Chukchi Sea, which we will return to in section 7. The
Beaufort Sea shows skill at 0–3-month lead times for summer
SIE and also has longer-lead prediction skill, however, the
skill is not continuous across lead times and displays gaps cor-
responding to April and March initialized predictions. The
Kara Sea stands out as a region with high summer prediction
skill up to lead times of 8 months in advance, which appears
to not be limited by the thickness-based spring predictability
barrier. We also find that both systems have skill in the Cana-
dian Arctic Archipelago and that SPEAR_MED is more skill-
ful in the central Arctic domain. We will return to the sources
of summer sea ice predictability in these systems in section 5.

c. Winter SIE prediction skill

Figure 7 shows detrended prediction skill values in the
regions of winter Arctic sea ice variability. Compared to the
summer regions, we find larger differences in skill structures
between FLOR and SPEAR_MED in these regions. The
GIN Seas stand out as the only region where FLOR
unequivocally outperforms SPEAR_MED. FLOR has skill
at 6–8-month lead times for December–March, whereas
SPEAR_MED does not have skill beyond 3 months in
advance. In the Barents, Labrador, Bering, and Okhotsk
Seas, we find skill up to 11 months in advance for predic-
tions of winter and spring sea ice. It is notable that in each
of these regions there are lead times and target months for
which the dynamical model predictions lose to the persis-
tence forecast, particularly for long-lead predictions of win-
ter and spring SIE. This suggests that both models have

room for improvement in their winter and spring SIE pre-
diction skill, potentially achievable by improving SIE ICs
and the model representation of physical processes respon-
sible for persisting SIE anomalies. In the Barents Sea,
SPEAR_MED has significantly higher skill than FLOR for
target months of May–October and slightly lower skill
for November–March, although these winter skill differ-
ences are not statistically significant. The Labrador Sea skill
is higher in SPEAR_MED than FLOR, however, the
SPEAR_MED skill only exceeds persistence for forecasts
initialized in fall and summer months. Note that the FLOR
Labrador Sea skill reported here is lower than that shown in
Bushuk et al. (2017a). This is due to the different reforecast
periods considered in these studies (1992–2020 and
1981–2015, respectively), and the associated inclusion of the
decadal-scale Labrador sea ice anomalies that occurred
between the mid-1980s and the late 1990s.

Bushuk et al. (2017a) highlighted differences between winter
prediction skill in the North Atlantic and the North Pacific,
with North Atlantic regions having higher skill than their North
Pacific counterparts in the FLOR system. Here we find that
SPEAR_MED’s skill does not clearly reflect this Atlantic–
Pacific dichotomy, as this system has long-lead skill in both the
Bering Sea and the Sea of Okhotsk. We also find that FLOR’s
North Pacific skill is somewhat higher over the reforecast eval-
uation period considered in this study, potentially related to
increased interannual-to-decadal Pacific sea ice variability over
this period. Both of these results raise questions as to whether
there is an inherent Atlantic–Pacific difference in sea ice pre-
dictability. The systems have similar skill in the Bering Sea,
whereas SPEAR_MED has higher skill in the Sea of Okhotsk
owing to improved skill for predictions initialized over the sum-
mer and fall months. We also find that both systems have skill
in predicting melt season and growth season SIE anomalies in
Hudson Bay and Baffin Bay, with SPEAR_MED having better
skill for Baffin Bay melt season predictions.

d. Pan-Arctic SIE prediction skill

Pan-Arctic SIE prediction skill represents a complex com-
bination of these regional skill contributions. Both systems
show skillful predictions of summer pan-Arctic SIE up to 3–4
months in advance, with the SPEAR_MED ACC values
being consistently higher than FLOR’s at lead times of 0–3
months. Target months of October–January and March–May
show pan-Arctic SIE skill at 7–11-month lead times in both
systems. Interestingly, both systems show relatively low skill
for target month February despite the systems having skill in
this month on the regional scale.

5. Sources of summer Arctic sea ice predictability

We next explore the mechanisms of summer sea ice pre-
dictability in the SPEAR_MED and FLOR prediction
systems. A body of earlier work has shown that the persis-
tence of SIE and SIV anomalies provide key sources of pre-
dictability for summer SIE (see references listed in the
Introduction). Inspired by this, we seek a parsimonious
description of summer SIE prediction skill, considering
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linear predictors based on regional SIE and SIV. Specifically,
we construct linear regression models for observed regional
SIE using the regional SIE and SIV ICs from each prediction
system. For the pan-Arctic domain, the SIV predictor excludes
the central Arctic region, as we found that removing this region
improved SIV-based prediction skill. This is due to the fact that
thickness anomalies in the central Arctic domain do not
strongly correlate with September SIE in these systems.

In Fig. 8, we compare the skill of these simple statistical
models to the dynamical model skill of FLOR and
SPEAR_MED. We find that, in most regions of summer SIE
variability, the dynamical model skill (blue curves) can be
effectively reconstructed via a combination of regional SIE
(black curves) and regional SIV (red curves) predictors. A
multilinear regression model based on regional SIE and SIV
has skill that closely resembles the maximum skill of the sin-
gle-variable predictors at each lead time (see Fig. S6).
Regional SIE ICs provide the key source of predictability at
short lead times (typically 0–1-month lead times), whereas
regional SIV ICs provide the key source of predictability at
longer lead times of 2–3 months. This analysis reveals the two
primary reasons for the summer SIE skill improvements in
SPEAR_MED relative to FLOR. First, SPEAR_MED has
improved SIE ICs, which improve its regional SIE prediction
skill at lead times of 0–1 months. Second, SPEAR_MED has
improved SIV ICs, which can explain the model’s improved
skill at lead times of 2–3 months.

We also experimented with other statistical predictors
for summer regional SIE, including surface air tempera-
ture, sea level pressure, upper-ocean salt content, and the
North Atlantic Oscillation (NAO; Hurrell 1995) index,
generally finding that these alternative predictors were
unable to provide additional skill beyond that of the SIE
and SIV predictors. While the combination of SIE and SIV
statistical models can reproduce the dynamical models’
skill in most regions, there are some notable exceptions to
this. In the Beaufort Sea, we find that the statistical models
clearly outperform the dynamical models, particularly in
the SPEAR_MED system. This suggests that the models
are not capitalizing on sources of sea ice predictability that are
present in their ICs. The poor performance of SPEAR_MED
in the Beaufort Sea is potentially related to the model’s posi-
tive SIC bias (Fig. 1f) and biases in SIT and drift (Fig. 2e) in
this region. The SPEAR_MED Kara Sea predictions are the
one region where the statistical models are unable to fully cap-
ture the dynamical model skill, particularly at lead times of
2–4 months (skill differences are statistically significant at leads 2
and 4 months, but not at lead 3 months), suggesting that an addi-
tional source of summer SIE predictability is relevant in this
region. Future work is required to further investigate this topic.

6. Sources of winter Arctic sea ice predictability

a. Statistical prediction models for winter sea ice

We next consider the sources of predictability for regional
winter Arctic SIE. As in the previous section, we draw upon
earlier work that has highlighted uOHC and SIE persistence

as key sources of winter SIE predictability (see references
listed in the introduction), and consider statistical models
based on these predictors. We construct linear regression
models for regional SIE based on the SPEAR_MED and
FLOR uOHC and SIE ICs. The uOHC predictors are based
on ocean temperature ICs regionally averaged over the upper
200 m, except for the Bering Sea where we use upper-50-m
ocean temperatures due to the shallow bathymetry of the
Bering Sea shelf region. The uOHC prediction skill results
are robust to the choice of depth range, and produce similar
values for lower depth limits ranging from 100 to 300 m. The
uOHC prediction skill is generally lower if only subsurface
temperatures (excluding the upper 50 m) or only SSTs are
used, indicating that both surface and subsurface tempera-
tures provide predictive value.

Figure 9 compares the winter SIE prediction skill of FLOR
and SPEAR_MED to the uOHC and SIE statistical predic-
tions. We find that in most regions of winter sea ice variability,
the combination of SIE and uOHC predictors are able to
reproduce, or even exceed, the skill of the dynamical models.
The key source of prediction skill at short lead times
(0–2 months) is SIE persistence, whereas uOHC becomes the
dominant source of skill at longer lead times (3–11 months).
We also find that the SIE predictor displays a clear reemer-
gence of skill for predictions initialized the previous spring.
The SIE-based skill at lead times of 7–11 months is generally
similar to the uOHC-based skill, consistent with earlier work
that has shown that melt-to-growth season SIE reemergence is
due to the persistence of uOHC anomalies (Blanchard-Wrig-
glesworth et al. 2011a). Analogous to the summer skill results,
we find that a multilinear regression model based on regional
SIE and uOHC has skill that resembles the maximum skill of
the single-variable predictors (see Fig. S7). We also investi-
gated other statistical predictors, including SIV, surface air
temperature, sea level pressure, upper-ocean salt content, and
the NAO index, finding that these predictors generally did not
provide additional skill to the SIE and uOHC predictors.

In the North Atlantic regions, the combination of statistical
predictors generally exceeds the skill of the dynamical mod-
els, implying that there is clear room for improvement in the
dynamical predictions. The one exception to this is the FLOR
GIN Sea predictions, where dynamical model skill exceeds
the FLOR statistical predictions, but shows comparable skill
to the SPEAR_MED GIN uOHC predictor. The poor winter
skill of SPEAR_MED in the GIN Seas is associated with a
region of relatively shallow mixed layers near the Greenland
Sea ice edge in the SPEAR_MED ocean ICs. This region of
shallower mixing tends to form ice more quickly in winter
months, thereby systematically producing positive SIC fore-
cast errors (not shown). The Sea of Okhotsk is the only winter
region in which the SPEAR_MED prediction skill is clearly
higher than the statistical predictors, suggesting that other
sources of predictability are relevant in this region.

b. The importance of large-scale ocean variability

We have shown that the combination of initialized regional
SIE and regional uOHC can explain most of the winter sea
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FIG. 8. Sources of regional September SIE prediction skill. Blue lines show the detrended ACC skill in (center)
FLOR and (right) SPEAR_MED. Black and red lines show the skill of linear regression forecasts based on regional
SIE and regional SIV, respectively. The SIE predictor is plotted for all initial months that have an SIE standard
deviation greater than 0.03 million km2. Dots indicate correlation values that are significant at the 95% confidence
level based on a t test. Note that the statistical predictions are shifted by 0.5-month lead time since these are com-
puted using monthly mean quantities, whereas the dynamical predictions are initialized on the first of eachmonth.
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FIG. 9. Sources of regional February SIE prediction skill. Blue lines show the detrended ACC skill in (center) FLOR
and (right) SPEAR_MED. Black and magenta lines show the skill of linear regression forecasts based on regional SIE and
regional uOHC, respectively. The SIE predictor is plotted for all initial months that have an SIE standard deviation greater than
0.03 million km2. Dots indicate correlation values that are significant at the 95% confidence level based on a t test. Note that the
statistical predictions are shifted by 0.5-month lead time since these are computed using monthly mean quantities, whereas the
dynamical predictions are initialized on the first of each month.
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ice prediction skill in the FLOR and SPEAR_MED models.
However, this does not preclude a role for larger-scale ocean
variability and dynamics in winter sea ice predictability. To
illustrate this point, we consider lagged correlations between
observed regional SIE and the earlier upper-200-m ocean
temperatures used for ICs in SPEAR_MED.

In Figs. 10 and 11, we plot upper-ocean temperature corre-
lation values with February SIE at different lead times in the
Labrador Sea and the Sea of Okhotsk, respectively. As
expected physically, we observe negative SIE–temperature
correlations local to the region at short lead times. Interest-
ingly, these negative correlations extend spatially throughout
the subpolar gyre regions of the North Atlantic and North
Pacific sectors, respectively. These broad spatial correlation
patterns are present at all lead times, with values that decay
for lead times of 0–2 months and are generally maintained at
longer lead times of 3–11 months.

The Labrador SIE–temperature correlation pattern
closely resembles the SST loading pattern of the NAO,
whereas the Sea of Okhotsk correlation pattern closely
resembles the SST loading pattern of the North Pacific Gyre
Oscillation (NPGO; Di Lorenzo et al. 2008). This suggests
that these large-scale modes of climate variability can be
leveraged as a potential source of winter sea ice predicta-
bility. This predictability can either come from 1) direct

initialization of large-scale uOHC anomalies and the sub-
sequent persistence and advection of these anomalies; or
2) successful dynamical prediction of the mode of variability
itself. We find that the NAO index is a skillful predictor of
regional winter SIE in the Labrador and Barents Seas, how-
ever, the skill is generally lower than that of SIE and uOHC
(see Fig. S7). This suggests that the direct initialization
approach is critical for winter SIE predictions, and that skill-
ful prediction of the NAO or NPGO index in seasonal pre-
diction systems may extend sea ice prediction skill to longer
lead times.

The NAO index prediction skill is relatively modest in both
FLOR and SPEAR_MED, with little skill beyond 1- month
lead times (not shown), suggesting that most of the SIE skill
in these systems is attributable to ocean and sea ice initializa-
tion. However, recent work with other dynamical prediction
systems has shown that the NAO index can be skillfully pre-
dicted months, or even 1 year, in advance, implying a poten-
tial for associated long-lead sea ice predictability (Dunstone
et al. 2016). These skillful NAO predictions are hampered by
the so-called signal-to-noise paradox, which necessitates the
use of large prediction ensembles (more than 30 members) to
extract the predictable part of the NAO signal (Scaife and
Smith 2018), which may be a computational challenge for
modern seasonal prediction systems.

FIG. 10. Correlations between observed February Labrador SIE and upper-200-m ocean temperatures used for SPEAR_MED ICs in ear-
lier months (leads of 0–11 months). The black contours show the observed February sea ice edge.
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7. Combined predictability regimes in the Chukchi Sea

We now consider the prediction skill in the Chukchi Sea. In
both SPEAR_MED and FLOR, the Chukchi skill values are
relatively modest for target months of August–October but
are flanked by longer-lead prediction skill for target months
of June, July, and November (see Fig. 6). This skill pattern
suggests that a combination of predictability regimes is pre-
sent in the Chukchi Sea, which depend on the target month.
We investigate this seasonally dependent predictability using
similar statistical models to section 5 and 6, based on regional
SIE, regional SIV, and uOHC. The uOHC predictor is based
on upper-50-m ocean temperatures averaged over the Chuk-
chi and Bering Seas. We include the Bering Sea domain in
order to capture the waters that flow northward through the
Bering Strait into the Chukchi Sea (Woodgate 2018).

The skill of these statistical predictors is compared to
the dynamical models’ skill in Fig. 12. In both systems,
two distinct predictability regimes are evident. The first
regime}occurring in June, July, and November}involves
uOHC providing the dominant source of predictability and
SIE persistence providing short lead (lead 0) predictability.
The second regime}occurring in August, September, and
October}mirrors the summer sea ice predictability find-
ings of section 5, with SIE persistence providing predict-
ability at short leads (0–1 month) and SIV persistence
providing predictability at longer leads. Again, we find that
the combination of SIE, SIV, and uOHC statistical predic-
tors is able to match, or in some cases exceed, the skill of
the dynamical models.

The ocean-based predictability regime has much higher
skill than the thickness-based regime, retaining significant

skill values up to lead times of 6–7 months for June and July
predictions and up to 11 months for November predictions. It
is also notable that the skill of the uOHC predictor drops off
sharply for target months of August–October, before ree-
merging to a much higher value in November. This finding
supports the recent work of Lenetsky et al. (2021), who found
that observed Bering Strait OHT (averaged over April and
May) skillfully predicted Chukchi SIA in June, July, and
November, but did not have skill over the intervening SIA
minimum months. Lenetsky et al. (2021) additionally found
that the prediction skill from Bering Strait OHT was attribut-
able to ocean temperature anomalies rather than volume trans-
port anomalies, consistent with our finding here that uOHC is a
skillful predictor.

These findings raise the natural question: Why does ocean-
based predictability in the Chukchi Sea drop off abruptly for
target months of August–October? We investigate this in
Fig. 13, where we plot the observed sea ice edge positions in
different months of the year and the climatological (annual
mean) ocean surface speed from the SPEAR_MED ocean
ICs. The SPEAR_MED ODA system resolves a northward
inflow through Bering Strait, which roughly splits into two
branches}one flowing north and east along the northern
Alaskan coastline and one flowing north and west toward
Wrangel Island. The Alaskan branch carries on eastward
along the coastline and is located south of the westward sur-
face flow of the Beaufort gyre. The Wrangel Island branch
transports waters northward to roughly Wrangel Island,
where the current loses strength. The spatial structure of this
inflow relative to the sea ice edge position suggests a reason
for the loss of ocean-based predictability in August–October.

FIG. 11. Correlations between observed February Okhotsk SIE and upper-200-m ocean temperatures used for SPEAR_MED ICs in ear-
lier months (leads of 0–11 months). The black contours show the observed February sea ice edge.
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FIG. 12. Sources of Chukchi Sea SIE prediction skill for target months of June–November. Blue lines show the detrended ACC skill in
FLOR and SPEAR_MED. Black, red, and magenta lines show the skill of linear regression forecasts based on regional SIE, regional SIV
and uOHC, respectively. The uOHC predictor is based on a regional mean over the Chukchi and Bering Seas. The SIE predictor is plotted
for all initial months that have an SIE standard deviation greater than 0.03 million km2. Dots indicate correlation values that are significant
at the 95% confidence level based on a t test. Note that the statistical predictions are shifted by 0.5-month lead time since these are com-
puted using monthly mean quantities, whereas the dynamical predictions are initialized on the first of each month.
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In particular, in June and July, the sea ice edge interacts
directly with inflowing waters from the Bering Strait, implying
a potential control of upstream uOHC anomalies on the sea
ice edge position. By August, however, the ice edge has
retreated sufficiently far northward that there is no longer
direct interaction with these inflowing waters, suggesting a
limited ability for the ocean inflow to impact the ice edge
position. The ice edge remains geographically isolated from
the inflow waters in September and October, before returning
to the inflow region in November, where it interacts with the
uOHC anomaly that was present the previous June and July.
Note that June, July, and November SIE can each be skillfully
predicted using the uOHC anomaly present the previous
December (lead times of 5, 6, and 10 months, respectively; see
Fig. 12), suggesting that these SIE anomalies arise from a
common and persistent uOHC anomaly that is initially gener-
ated in early winter.

8. Discussion and conclusions

In this study, we have analyzed the regional prediction skill
and predictability of Arctic sea ice extent (SIE) using retro-
spective seasonal forecasts performed with the FLOR and
SPEAR_MED dynamical prediction systems. We found that
both systems skillfully predict detrended regional Arctic SIE
on the seasonal time scale, with skill that is typically higher
than that of a persistence forecast. The recently developed

SPEAR_MED system generally has improved skill relative to
FLOR, both for pan-Arctic and regional predictions. This
improved skill in SPEAR_MED is largely attributable to
improved representation of interannual variability and trends
in the sea ice concentration (SIC) and sea ice thickness (SIT)
fields used for initial conditions (ICs). Compared to FLOR,
SPEAR_MED may also benefit from improved initialization
of its atmospheric state and differences in model physics, but
these aspects have not been explicitly explored in this work.

While SPEAR_MED generally has higher skill values, the
correlation patterns of regional SIE skill are similar between the
two systems. This consistency in skill patterns across the two
independent prediction systems builds our confidence in the
robustness of particular skill features. We found that predictions
initialized 1 June and later skillfully predicted summer SIE, and
predictions initialized 1 May or earlier generally had lower skill
values, consistent with the SIT-based spring sea ice predictability
barrier (Bushuk et al. 2020). Some notable exceptions to this
barrier-type skill behavior were found, such as long-lead predic-
tion skill for June, July, and November SIE in the Chukchi
Sea and long-lead prediction skill for July–November SIE in
the Kara Sea. We hypothesize that this longer lead summer
prediction skill arises due to ocean-based predictability, which
extends skill beyond the typical limits expected for SIT-based
predictability.

Both FLOR and SPEAR_MED were found to skillfully
predict regional winter SIE up to 11 months in advance, but

FIG. 13. Interaction of the Chukchi Sea ice edge with surface ocean currents from June through November. The panels show monthly
observed sea ice edges plotted as gray contours for each year from 1992 to 2020. The climatological (annual mean) ocean surface speed
(m s21) from the SPEAR_MED ocean ICs is plotted in color.
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unlike summer predictions, the systems do not consistently
beat the persistence forecast for winter target months. We
found that the dichotomy between North Atlantic and North
Pacific winter SIE prediction skill identified earlier in FLOR
(Bushuk et al. 2017a) is not apparent in SPEAR_MED and is
also reduced in this study’s analysis of FLOR due to the dif-
ferent time period considered for skill evaluation. This finding
suggests that there may not be an inherent Atlantic–Pacific
predictability difference, but similar analyses with other pre-
diction systems are required to further investigate this topic.

We explored the physical mechanisms underlying regional
sea ice predictability by attempting to reconstruct the dynami-
cal prediction skill of the systems using a parsimonious set of
simple statistical models. These statistical models were based
on the regional SIE, regional sea ice volume (SIV), and
regional upper-ocean heat content (uOHC) ICs used for the
forecasts. We found that the skill of the dynamical models can
generally be reproduced by a combination of these predictors,
suggesting that these three factors constitute the crucial
sources of regional sea ice predictability in these prediction
systems. We also investigated other statistical predictors,
including surface air temperature, sea level pressure, upper-
ocean salt content, and the NAO index, generally finding that
these alternative predictors were unable to provide additional
skill beyond that of SIE, SIV, and uOHC. The key sources of
summer sea ice predictability were identified as SIE persis-
tence at short lead times (0–1 month) and SIV persistence at
longer lead times (2–3 months). We found that the key sour-
ces of winter sea ice predictability are SIE persistence at short
lead times (0–2 months) and uOHC persistence at longer lead
times (3–11 months). We also found that winter sea ice varia-
tions display long-lead covariability with uOHC patterns
resembling large-scale modes of climate variability. This anal-
ysis suggested that the NAO and NPGO modes provide a
source of winter sea ice predictability, and that skillfully pre-
dicting these modes may improve sea ice prediction skill.

The Chukchi Sea was found to have seasonally dependent
predictability regimes, which are controlled by SIE and
uOHC in June, July, and November, and SIE and SIV in
August–October. This seasonality in the efficacy of uOHC as
a predictor of Chukchi SIE is consistent with the results of
Lenetsky et al. (2021). We found that this trade-off in predict-
ability sources was due to the seasonal evolution of the ice
edge position and its associated interaction with inflowing
waters from the Bering Strait.

Many earlier works have argued for the role of SIE, SIV,
and uOHC as sources of seasonal sea ice predictability. To
our knowledge, this study provides the first quantitative
assessment of the skill attributable to each of these factors.
We found that linear regression models based on regional
SIE, SIV, and uOHC provide a stringent skill benchmark,
which can effectively capture, if not exceed, the skill of the
dynamical models. Therefore, we advocate that these regional
SIE, SIV, and uOHC regression models should be used as a
standard benchmark test for evaluating the skill of regional
sea ice predictions. Dynamical prediction skill that exceeds
these benchmarks, such as the Sea of Okhotsk and the Kara
Sea in this study, will then motivate further research into

additional mechanisms of sea ice predictability. These bench-
marks also serve as useful metrics for assessing the fidelity of
simulated interannual variability in reanalysis-forced ice–o-
cean simulations.

Acknowledgments. We thank three anonymous reviewers
for insightful comments that improved the manuscript. We
thank Hyung-Gyu Lim and Marion Alberty for helpful com-
ments on a preliminary version of this manuscript. This
research from the Geophysical Fluid Dynamics Laboratory is
supported by NOAA’s Science Collaboration Program and
administered by UCAR’s Cooperative Programs for the
Advancement of Earth System Science (CPAESS) under
Awards NA16NWS4620043 and NA18NWS4620043B.

Data availability statement. The NASA team sea ice con-
centration observations used in this study are available from
the National Snow and Ice Data Center website (http://nsidc.
org/data/NSIDC-0051/versions/1). The OSISAF low-resolu-
tion sea ice drift product is available via the OSISAF web por-
tal (https://osi-saf.eumetsat.int/products/sea-ice-products). The
PIOMAS sea ice thickness data are available from the Polar
Science Center at the University of Washington (http://psc.apl.
uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/
model_grid). The CryoSat-2 sea ice thickness data are avail-
able from the Alfred Wegener Institute for Polar and Marine
Research data portal (https://www.meereisportal.de). The
FLOR predictions analyzed in this work are available through
the North American Multi-Model Ensemble (NMME) Phase-II
data (http://www.cpc.ncep.noaa.gov/products/NMME/data.html).
The SPEAR prediction data are available via a public ftp server
(ftp://nomads.gfdl.noaa.gov/users/Mitchell.Bushuk/Arctic_Sea_
Ice_Predictions).

REFERENCES

Adcroft, A., and Coauthors, 2019: The GFDL global ocean and
sea ice model OM4.0: Model description and simulation fea-
tures. J. Adv. Model. Earth Syst., 11, 3167–3211, https://doi.
org/10.1029/2019MS001726.

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for
data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.
org/10.1175/1520-0493(2001)129,2884:AEAKFF.2.0.CO;2.

}}, and Coauthors, 2004: The new GFDL global atmosphere
and land model AM2–LM2: Evaluation with prescribed SST
simulations. J. Climate, 17, 4641–4673, https://doi.org/10.1175/
JCLI-3223.1.

Andersson, T. R., and Coauthors, 2021: Seasonal Arctic sea ice
forecasting with probabilistic deep learning. Nat. Commun.,
12, 5124, https://doi.org/10.1038/s41467-021-25257-4.

Årthun, M., T. Eldevik, L. H. Smedsrud, Ø. Skagseth, and R.
Ingvaldsen, 2012: Quantifying the influence of Atlantic heat
on Barents Sea ice variability and retreat. J. Climate, 25,
4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1.

Babb, D., J. Landy, D. Barber, and R. Galley, 2019: Winter sea
ice export from the Beaufort Sea as a preconditioning mecha-
nism for enhanced summer melt: A case study of 2016.
J. Geophys. Res. Oceans, 124, 6575–6600, https://doi.org/10.
1029/2019JC015053.

B U S HUK E T A L . 42271 JULY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/05/22 05:21 PM UTC

http://nsidc.org/data/NSIDC-0051/versions/1
http://nsidc.org/data/NSIDC-0051/versions/1
https://osi-saf.eumetsat.int/products/sea-ice-products
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/model_grid
https://www.meereisportal.de
http://www.cpc.ncep.noaa.gov/products/NMME/data.html
ftp://nomads.gfdl.noaa.gov/users/Mitchell.Bushuk/Arctic_Sea_Ice_Predictions
ftp://nomads.gfdl.noaa.gov/users/Mitchell.Bushuk/Arctic_Sea_Ice_Predictions
https://doi.org/10.1029/2019MS001726
https://doi.org/10.1029/2019MS001726
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
https://doi.org/10.1175/JCLI-3223.1
https://doi.org/10.1175/JCLI-3223.1
https://doi.org/10.1038/s41467-021-25257-4
https://doi.org/10.1175/JCLI-D-11-00466.1
https://doi.org/10.1029/2019JC015053
https://doi.org/10.1029/2019JC015053


}}, }}, J. Lukovich, C. Haas, S. Hendricks, D. Barber, and
R. Galley, 2020: The 2017 reversal of the Beaufort Gyre:
Can dynamic thickening of a seasonal ice cover during a
reversal limit summer ice melt in the Beaufort Sea? J.
Geophys. Res. Oceans, 125, e2020JC016796, https://doi.
org/10.1029/2020JC016796.
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